temario de calculo - 3.5 INCREMENTOS Y DIFERENCIALES
FRANCISCO JAVIER LOPEZ OLIVERA
  "UNIDAD I" INTRODUCCION AL CALCULO
  1.1 CLASIFIOCACION Y PROPIEDADES DE LOS NUMEROS REALES
  1.2 LA RECTA NUMERICA Y INTERVALO
  1.3 VALOR ABSOLUTO
  1.4 DESIGUALDAD
  1.5 FUNCIONES ALGEBRAICAS Y SUS GRAFICAS
  1.6 FUNCIONES TRIGONOMETRICAS Y SUS GRAFICAS
  "UNIDAD II" LIMITES Y CONTUNUIDAD
  2.1 DEFINICION DE LIMITE
  2.2 TEOREMAS DE LIMITES
  2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
  2.4 FUNCIONES CONTINUAS
  "UNIDAD III" DERIVADA
  3.1 DEFINICION DE LA DERIVADA Y SU INTERPRETACION NUMERICA
  3.2 REGLAS PARA CALCULAR LA DERIVADA
  3.3 CALCULO DE DERIVADAS ALGEBRAICAS POR FORMULA
  3.4 DERIVADAS DE FUNCIONES TRASCENDENTES
  3.5 INCREMENTOS Y DIFERENCIALES
  3.6 REGLA DE LA CADENA
  "UNIDAD IV" APLICACIONES DE LA DERIVADA
  4.1 LA DERIVADA COMO RAZON DE CAMBIOS
  4.2 ECUACIONES DE LA RECTA TANGENTE Y LA NORMAL
  4.3 PUNTOS MAXIMOS Y MINIMOS DE FUNCIONES
  4.4 CRITERIOS DE LA PRIMERA Y SEGUNDA DERIVADA
  4.5 CALCULO DE LOS PUNTOS DE INTERSECCION DE UNA FUNCION
  4.6 EJERCICIOS DE APLICACION
  "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
  5.1 ANTI DERIVADA
  5.2 DEFINICION DE LA INTEGRAL DEFINIDA
  5.3 PROPIEDADES DE LA INTEGRAL DEFINIDA
  5.4 TEOREMA DEL VALOR MEDIO PARA LA INTEGRAL
  5.5 TEOREMA FUNDAMENTAL DE CALCULO
  "UNIDAD VI" TECNICAS DE INVESTIGACION
  6.1 INTEGRACION POR PARTES
  6.2 INTEGRALES TRIGONOMETRICA
  6.3 SUSTITUCION TRIGONOMETRICA
  6.4 FRACCIONES PARCIALES
  6.5 EJERCICIOS DE APLICACION

 

 

 

Incrementos y diferenciales



Incrementos:

El incremento Dx de una variable x es el aumento o disminución que experimenta, desde un valor x = x0 a otro x = x1 de su campo de variación. Así, pues,

X=x1-x0

o bien

x1=x0´X

Si se da un incremento Dx a la variable x, (es decir, si x pasa de x = x0 a x = x0 + Dx), la función y = f (x) se verá incrementada en Dy = f (x0 + Dx) - f (x0) a partir del valor y = f (x0). El cociente

recibe el nombre de cociente medio de incrementos de la función en el intervalo comprendido entre x = x0 a x = x0 + Dx. (Ayres, 22)]


Diferencial:

En particular, para una función y=f(x) para un valor inicial x0 se tiene la pendiente de la línea recta tangente en las coordenadas [x0,f(x0)], dada por la m=f’(x0). Cuya ecuación de la línea recta tangente queda entonces definida como: y-f(x0)=m(x-x0)

Ante un cambio en la variable x podemos determinar el incremento x0 por x0+dx, donde el incremento dx es comúnmente un incremento pequeño, pero no cero, llamado diferencial en x.

Analizando el sistema función y línea recta tangente a dicha función entonces podemos analizar que existen dos puntos importantes a analizar, los de la función y los de la recta tangente:

1) Para referirnos al cambio que ocurre en el valor de f designaremos la notación dy.

2) Para referirnos al cambio que ocurre en el valor de y para la recta tangente utilizaremos la notación dy.



arriba
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis