temario de calculo - 5.1 ANTI DERIVADA
FRANCISCO JAVIER LOPEZ OLIVERA
  "UNIDAD I" INTRODUCCION AL CALCULO
  1.1 CLASIFIOCACION Y PROPIEDADES DE LOS NUMEROS REALES
  1.2 LA RECTA NUMERICA Y INTERVALO
  1.3 VALOR ABSOLUTO
  1.4 DESIGUALDAD
  1.5 FUNCIONES ALGEBRAICAS Y SUS GRAFICAS
  1.6 FUNCIONES TRIGONOMETRICAS Y SUS GRAFICAS
  "UNIDAD II" LIMITES Y CONTUNUIDAD
  2.1 DEFINICION DE LIMITE
  2.2 TEOREMAS DE LIMITES
  2.3 LIMITES DE FUNCIONES ALGEBRAICAS Y TRASCENDENTES (TRIGONOMETRICAS)
  2.4 FUNCIONES CONTINUAS
  "UNIDAD III" DERIVADA
  3.1 DEFINICION DE LA DERIVADA Y SU INTERPRETACION NUMERICA
  3.2 REGLAS PARA CALCULAR LA DERIVADA
  3.3 CALCULO DE DERIVADAS ALGEBRAICAS POR FORMULA
  3.4 DERIVADAS DE FUNCIONES TRASCENDENTES
  3.5 INCREMENTOS Y DIFERENCIALES
  3.6 REGLA DE LA CADENA
  "UNIDAD IV" APLICACIONES DE LA DERIVADA
  4.1 LA DERIVADA COMO RAZON DE CAMBIOS
  4.2 ECUACIONES DE LA RECTA TANGENTE Y LA NORMAL
  4.3 PUNTOS MAXIMOS Y MINIMOS DE FUNCIONES
  4.4 CRITERIOS DE LA PRIMERA Y SEGUNDA DERIVADA
  4.5 CALCULO DE LOS PUNTOS DE INTERSECCION DE UNA FUNCION
  4.6 EJERCICIOS DE APLICACION
  "UNIDAD V" TEOREMA PARA LA SOLUCION DE INTEGRALES
  5.1 ANTI DERIVADA
  5.2 DEFINICION DE LA INTEGRAL DEFINIDA
  5.3 PROPIEDADES DE LA INTEGRAL DEFINIDA
  5.4 TEOREMA DEL VALOR MEDIO PARA LA INTEGRAL
  5.5 TEOREMA FUNDAMENTAL DE CALCULO
  "UNIDAD VI" TECNICAS DE INVESTIGACION
  6.1 INTEGRACION POR PARTES
  6.2 INTEGRALES TRIGONOMETRICA
  6.3 SUSTITUCION TRIGONOMETRICA
  6.4 FRACCIONES PARCIALES
  6.5 EJERCICIOS DE APLICACION

 

En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.

Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.

Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración.

Como consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:

int{f} ó int{f(x)dx}

El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo integral, y proporcionan un método sencillo de calcular integrales definidas de numerosas funciones.


Archivo:Slope Field.png

 
El campo vectorial definido asignando a cada punto (x, y) un vector que tiene por pendiente ƒ(x) = (x3/3)-(x2/2)-x. Se muestran tres de las infinitas primitivas de ƒ(x) que se pueden obtener variando la constante de integración C.
 


arriba
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis